Name_____

EE 330

Exam 2 Fall 2020 (Oct 9 2020)

Instructions: There are 10 questions and 5 problems. The points allocated to each question and each problem are as indicated. Please solve problems in the space provided on this exam, on separate sheets of white paper, or on a tablet pc. When finished, scan or image and upload as a .pdf file on Canvas. Exams are due by 1:00 p.m.

Due to the online nature of this exam, students will be expected to adhere to the honor system and acknowledge adherence with a signature given below. This is an open-book open-notes exam and students can seek basic information using online resources but with the following absolute restrictions. Prior to the Canvas upload due time, no questions or problems should be posted on any electronic forum, no discussions are permitted relating to this exam with anyone else besides the course instructor, and no solutions obtained from any source other than by the student taking the exam is permitted. The course instructor will attempt to respond to questions by email that are sent between 11:00 a.m. and 1:00 p.m.

If parameters of semiconductor processes are needed beyond what is given in a specific problem or question, assume a CMOS process is available with the following key process parameters; $\mu_n C_{OX}=100\mu A/V^2$, $\mu_p C_{OX}=\mu_n C_{OX}/3$, $V_{TNO}=0.5V$, $V_{TPO}= -0.5V$, $C_{OX}=8fF/\mu^2$, $\lambda = 0$. Correspondingly, assume all npn BJT transistors have model parameters $J_S=10^{-14}A/\mu^2$ and $\beta=100$ and all pnp BJT transistors have model parameters $J_S=10^{-14}A/\mu^2$ and $\beta=25$. If the emitter area of a transistor is not given, assume it is $100\mu^2$. If reference to a diode is made, assume the process parameter $J_S=10^{-17}A/\mu^2$, $V_{GO}=1.17V$, and m=2.3. The ratio of Boltzmann's constant to the charge of an electron is k/q=8.61E-5 V/K. If any other process parameters for MOS devices are needed, use the process parameters associated with the process described on the attachment to this exam. Specify clearly what process parameters you are using in any solution requiring process parameters.

Honor System Adherence Signature:

I certify that I have adhered to the honor system policy described in the second paragraph above _____

Short Questions

1. (2 pts) How many model parameters are there in a 16-bin binning model if each bin used a BSIM device model?

2. (2 pts) One of the models that was introduced for the MOS transistor was the α -law model. Though it is more accurate than the square-law model for very small transistors, it is not used much. Why is the α -law model not used much?

3. (2pts) Why is the β of the vertical transistor typically much larger than the β of a lateral transistor in a typical bipolar process?

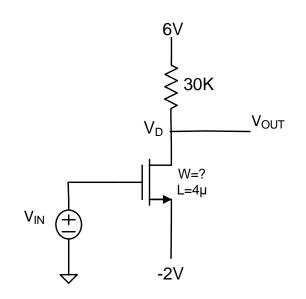
4. (2 pts) Why is CVD used instead of thermal growth when placing a SiO_2 layer on top of an aluminum interconnect?

5 (2 pts) True or False: When operating in the forward active region the BE junction of a BJT is forward biased and the BC junction is forward biased for npn transistors?

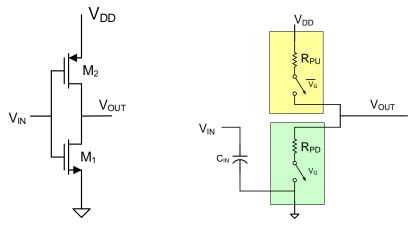
6. (2pts) What parameter in the model of the BJT models the slope of the output characteristics in the Forward Active region?

7. (2pts) Why is an epitaxial process used to create the collector region of a BJT instead of an n-type diffusion in a typical bipolar process?

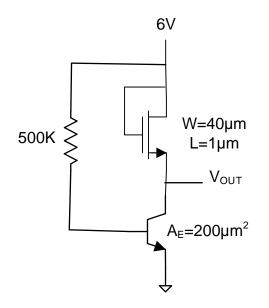
8. (2pts) The term "increasing the power of a signal" is commonly used when describing an electronic amplifier. The input and output signals in an amplifier are, however, often voltages. What does it mean to "increase the power of a signal?" when the signals of interest are voltages?


9. (2pts) Through the 50's and 60's, bipolar processes were exclusively used to build integrated circuits with active devices. Why were the CMOS processes that are widely used today not used in the 50's and 60's?

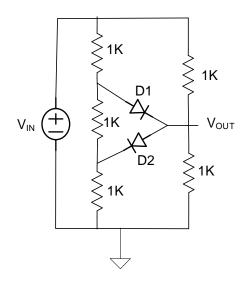
10. (2pts) Why are designers not able to make a direct contact between Metal 2 and active in the standard CMOS process flow that was discussed in class?


Problems

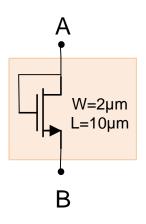
Problem 1 (16 pt) Consider the following circuit.


- a) Determine W so that the quiescent output voltage is 0V
- b) If V_{IN}=0.02sin(100t), determine the output voltage with the value of W determined in part a)

Problem 2 A switch-level model for a digital inverter is shown below. If the supply voltage is 2.2V, determine the parameters in the switch-level model if the inverter is designed in the 0.18um process (model information attached to this exam) with dimensions $L_1=L_2=0.5\mu m$ and $W_1=W_2=4\mu m$.



Problem 3 Determine V_{OUT}. Assume the bipolar transistor has parameters β =100 and J_S=10⁻¹⁴A/ μ^2 and the MOS transistor has parameters uCox=100 μ A/V² and V_{TH}=1V.


Problem 4 (16 pts)Consider the following circuit where the diodes areassumed to be modeled by the equation $\begin{cases} I_D = 0 & \text{if } V_D < 0.6V \\ V_D = 0.6V & \text{if } I_D > 0 \end{cases}$

- a) Determine V_{OUT} if $V_{IN} = 3V$
- b) For 0 < t < 6, obtain an expression for and plot V_{OUT} if $V_{IN}=6t$
- c) Extra Credit (8 pts) Obtain an expression for and plot $V_{OUT}(t)$ if $V_{IN}(t)=6sin(10t)$ for one period of the input.

Problem 5 (16 pts) Consider the following one-port where the MOS transistor has parameters $V_{TN}=0.5V \ \mu_n C_{OX}=300 \mu AV^{-2}$ and $\lambda=0$. Assume the quiescent current was measured to be I_Q=4mA.

- a) Determine the quiescent voltage between nodes A and B
- b) The small-signal equivalent circuit of any one-port at any Q-point is a resistor. Derive the small-signal equivalent of the one-port between nodes A and B at the Q-point specified.

RUN:	T68B (MM NON-EPI)		VENDOR:
TSMC	—		
TECHNOLOGY:	SCN018		FEATURE SIZE: 0.18
microns			
		Run type: SKD	

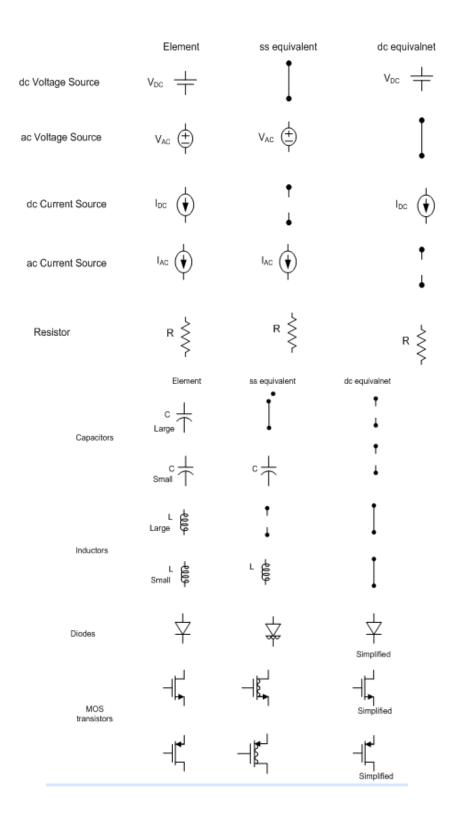
INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

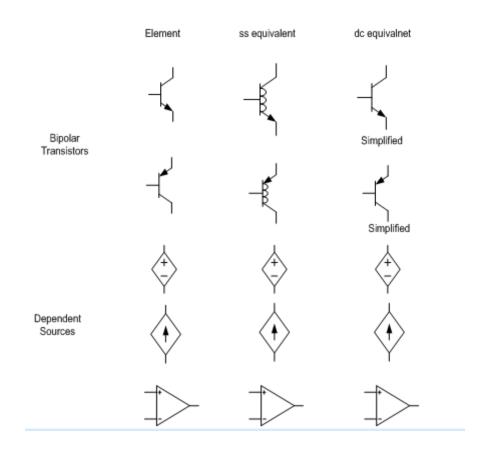
COMMENTS: DSCN6M018 TSMC

TRANSISTOR PARAMETE	RS W/L	N-CHANNEL	P-CHANNEL	UNITS
MINIMUM Vth	0.27/0.18	0.50	-0.51	volts
SHORT Idss Vth Vpt	20.0/0.18	547 0.51 4.8	-250 -0.51 -5.6	uA/um volts volts
WIDE Ids0	20.0/0.18	14.4	-4.7	pA/um
LARGE Vth Vjbkd Ijlk	50/50	0.43 3.1 <50.0	-4.3	volts volts pA
K' (Uo*Cox/2) Low-field Mobility		175.4 416.5		

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameters XL and XW in your SPICE model card.

	Design Tech	nnology	Х	L (um)	XW um)		
	SCN6M_DEEP	(lambda=0.09) 0	.00	-0.01		
		thick oxid	e 0	.00	-0.01		
	SCN6M_SUBM	(lambda=0.10) -0	.02	0.00		
		thick oxid	e -0	.02	0.00		
FOX TRANSISTORS Vth	GATE Poly	N+ACTIVE >6.6	P+ACTIVE <-6.6	UNITS volts			


PROCESS PARAMETERSN+P+POLYN+BLKPLY+BLKM1M2UNITSSheet Resistance6.77.88.059.7313.60.080.08ohms/sqContact Resistance10.611.010.04.79ohmsGate Oxide Thickness 4190LY_HRIM4M5M6N_WUNITSPROCESS PARAMETERSM3POLY_HRIM4M5M6N_WUNITSSheet Resistance0.080.080.080.03930ohms/sqContact Resistance9.2414.0518.3920.69ohms


COMMENTS: BLK is silicide block.

CAPACITANCE PARAMETERS	5 N+	P+	POLY	M1	М2	ΜЗ	M4	M5	М6	R_W	D_N_W_M5P_N_W_U	NITS
Area (substrate)	942	11	63 106	34	14	9	6	5	3		123 125 aF,	′um^2
Area (N+active)			8484	55	20	13	11	9	8		aF,	/um^2
Area (P+active)			8232								aF,	/um^2
Area (poly)				66	17	10	7	5	4		aF,	/um^2
Area (metal1)					37	14	9	6	5		aF,	/um^2
Area (metal2)						35	14	9	6		aF,	/um^2
Area (metal3)							37	14	9		aF,	/um^2
Area (metal4)								36	14		aF,	/um^2
Area (metal5)									34		984 aF,	/um^2
Area (r well)	92()									aF,	/um^2
Area (d well)										582	aF,	/um^2
Area (no well)	13	7									aF,	/um^2
Fringe (substrate)	212	2	235	41	35	29	21	14			al	₹/um
Fringe (poly)				70	39	29	23	20	17		al	₹/um
Fringe (metall)					52	34		22	19		al	∃/um
Fringe (metal2)						48	35	27	22		al	∃/um
Fringe (metal3)							53	34	27		al	∃/um
Fringe (metal4)								58	35		al	₹/um
Fringe (metal5)									55		al	∃/um
Overlap (N+active)			89	5							al	∃/um
Overlap (P+active)			73	7							al	F/um

CIRCUIT PARAMETERS		UNITS					
Inverters	K						
Vinv	1.0	0.74	volts				
Vinv	1.5	0.78	volts				
Vol (100 uA)	2.0	0.08	volts				
Voh (100 uA)	2.0	1.63	volts				
Vinv	2.0	0.82	volts				
Gain	2.0	-23.72					
Ring Oscillator Freq.							
D1024 THK (31-stg,3.3V)		300.36	MHz				
DIV1024 (31-stg,1.8V)		363.77	MHz				
Ring Oscillator Power							
D1024 THK (31-stg,3.3V)		0.07	uW/MHz/gate				
DIV1024 (31-stg,1.8V)		0.02	uW/MHz/gate				

Dc and small-signal equivalent elements

